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A new method is presented for the calculation of molecular properties in which the one center 
integrals are evaluated within their environment (scaled in the molecule) rather than carried over from 
atomic structures. 

The procedure can be incorporated into any SCF scheme using a minimal basis set of atomic 
orbitals. In this paper an INDO framework was chosen to illustrate the results. Both heats of formation 
and bond distances for various types of molecules were found in satisfactory agreement with experiment. 

Es wird eine neue Methode f'tir die Berechnung von Molekiileigenschaften vorgeschlagen, in 
welcher die Einzentrenintegrale innerhalb ihrer Umgebung im Molekiil bestimmt werden, statt sie 
von freien Atomen zu iibernehmen. 

Diese Methode kann bei jedem SCF Verfahren angewandt werden, das auf einer minimalen Basis 
yon Atomorbitalen aufbaut. Zur Illustration der Ergebnisse in dieser Arbeit wird das INDO-Verfahren 
gew~ihlt. Sowohl Bildungsw~irmen als auch Bindungsabst~inde von verschiedenen Molekiilarten sind 
in guter Ubereinstimmung mit den experimentellen Daten. 

Une nouvelle m6thode pour le calcul des propri&6s mol6culaires est present6e, dans laquelle les 
int6grales monocentriques sont evalu6es dans leur environnement (ajust6es ~t la mol6cule), au lieu 
d'&re transf6r6es du calcul atomique. 

Le proc6d6 peut &re incorpor6 dans n'importe quel schema SCF qui utilise un <~basis set>> minimal. 
Dans cet article, le proc6d6 est illustr6 par l'utilisation d'un schema INDO. 
Les chaleurs de formation et les distances de liaison pour plusieurs types de mol6cules sont trouv6es 

en accord satisfaisant avec l'experience. 

1. Introduction 

The first semiempirical methods for the Self Consistent Field Calculation 
of a bonded molecules were introduced six years ago [-1]. Since then, several 
procedures specifically designed for the calculation of particular properties, have 
been proposed 1,-2-63. These procedures often utilize the original framework but 
differ from it sometimes by some minor adjustment of parameters or by some 
feature expecially designed to allow a specific property to be calculated, such 
as interaction of configuration for spectra I-3]. 

* Present address: Institute of Physical Chemistry, Czechloslovak Academy of Sciences, Machova 
ul. 7, Praha 2, Czechloslovakia. 
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Although the approximations used for evaluating the various integrals are 
widely varied, the orbital energies and density matrices remain astonishingly 
similar in all these methods. A further remarkable similarity is that they con- 
sistently fail to account for ground and excited state properties consistently. 
Moreover, even for ground state molecules, it does not seem to be possible to 
obtain good values for bond distances and heats of formation simultaneously. 

The total heat of formation of a molecule results from the intrinsic combination 
of electronic energy and core repulsions. Although the core repulsions are relatively 
easy to approximate and, if this is done (i.e., CNDO [4], INDO [2]), relatively 
good bond distances can be obtained (by minimization), the heats of formation 
are several orders of magnitude larger than those experimentally observed. If 
on the other hand, one wants to correlate the heats of formation, one has to 
decrease arbitrarily the core repulsion (i.e., PNDO [-5], MINDO [6]). By doing 
this, however, bond distances are usually found to be too short. 

It thus appears that, at the present time, we are in possession of several powerful 
theoretical methods which are designed either for ground state energies, bond 
distances or transition energies calculations. However, one may argue that a 
sound method should be able to reproduce all three sets of properties. The fact 
that these methods do not, may mean that one is overlooking some important 
property which jeopardizes any new type of calculation such as the interpretation 
of NMR, IR or chemical reactivity data. 

Numerous reasons may be invoked as responsible for such discrepancies 
including even the possibility that such crude methods cannot be expected to 
yield all these results. However, several routes which have not been investigated 
as yet, may still be open for improvement. One of these involves a reexamination 
of the "common to all semiempirical SCF methods" way of determining the one 
center integrals. These integrals are determined semiempirically by comparing 
the experimental and calculated ionization potentials of atoms. One may speculate 
however that such a procedure does not properly take into account the molecular 
environment and thus neglects the resulting expansion or contraction of the atomic 
orbitals on which the molecular orbitals are built. The neglect of this expansion 
of orbitals explains precisely the observed discrepancy between ground and ex- 
cited states, and also the necessity of decreasing arbitrarily the nuclear interactions 
in order to obtain satisfactory bond energies. 

In a previous communication [7], we have presented a new semiempirical 
method for the calculation of one center integrals involving scaled Slater orbitals. 
We now wish to present a method for the calculation of molecular properties in 
which the one center integrals are evaluated within their environment (scaled 
in the molecule) rather than treated as parameters carried over from atomic 
structures. The proposed method for the calculation of atomic terms might be, 
of course, incorporated in any numerical scheme using a minimum basis set of 
atomic orbitals, including an ab initio calculation method. In this article we are 
illustrating the procedure within an INDO [-2] framework of approximations 
because of its intermediate complexity between the CNDO-type and ab initio 
type calculations. We believe with it, to gain a proper insight into the effect of 
using the variable exponent method to calculate molecular properties. 
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2. Theory 

For a closed shell INDO type Hamiltonian, the elements of the Hartree-Fock 
matrix F,~ can be expressed as 

F~ = H~p + G~ ,  (1) 

where, if e = fl and the atomic orbital e is centered on atom I, 

[ J~/~== Ec~l-�89 - V~l~] + Y~ Ec~l- Vjlcd, 
J(:r 

G~=-- y, P~,{E.zl~zg~-�89 } 
~e(I) 

+ ~ ~ P~Ecdl'r ''J 
J(=~ I) Ke(J) 

and, if e 4= fl, 

G~p -= �89 {(3 E~ BIc~B]'- E~z I/~2]b ~. - I-cd I/~2]u(1 - ~.)}. 

(2) 

(3) 

In these formulae, the Greek letters refer to atomic orbitals, the capital letters 
refer to atoms, the summation ~ extends over the AO's centered on atom I, 

~E(I) 
P is the charge density - bond order matrix, and 6u is the Kronecker symbol: 

1, if the AO's ~ and fl belong to the same atom 

6IJ = 0, if the AO's ~ and fl belong to two different atoms I and J. 

All other symbols are the same as those used in Paper I of this series or will be 
specified later on. The total molecular energy can be expressed as 

Eto t --= �89 (Tr(H + F) P) + Core-Core inter, terms. (4) 

The problem which specifically interests us here consists in deriving a procedure 
for the minimization of the total energy of a molecule, Etot, not only with respect 
to the coefficients of the atomic orbitals but also to the exponents of a minimal 
basis set of STO functions. In this paper, the treatment will be restricted to mole- 
cules composed only of first and second row elements. Due to the space invariance 
requirement, it will be necessary to assign identical exponents to the various p 
orbitals centered on any given atom. Thus, in addition to the usual quantities 
that are being optimized in classical SCF theories, i.e., coefficients of atomic 
orbitals, one (for H atom) or two (for second row atoms) additional variational 
parameters will have to be optimized per atom. Assuming a first order approxi- 
mation to the P matrix, the optimized atomic exponents might be determined 
according to the variation principle by setting the corresponding partial deriv- 
atives of the total molecular energy equal to zero. 

For the sake of convenience, let us use the indices # and )~ (or A) for the s- 
and p-orbitals, respectively, and let the index v refer to either kind. If I defines 
the specific atom, the result of the variation procedure can be expressed as the 
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following nonlinear system of equations of the s-orbital exponents a~(#) and the 
p-orbital exponents ai(2) of all atoms (I = A, B . . . .  K) composing the molecule: 

a,(lO = K~ { Z~ 1 Puu 8 [#2 ]#a], 
NI~ 4 0 a I (I~) 

+(A~I) P#a ~' pAa) 8 [/~2122] l 
aa,(#) A m (I) 

l(a + 2 i) PAA P.. Am(SI) P2A aa,(~) a a~(#) ] '  

(5) 

where 

ai(~)=K~ 
~a 

Zip 1 Am2(I) 0[s163 I 

2 4 Z PAA 8a~(2) 
Am(1) 

+ 
Z PL ) 

Am(I) p. .  
2. Z P~A 

Am(l) 

0 [)~2 l#211 
Oai(~) 

1 +-~ 
A ~ - )  - -  

aax(2) 

+ w 
S 2 p2A * 

1 A < A*m (I) 

E PAA 2 
Am(I) 

2 E PAA" PA*A*) 
A<A*~(I) 

1(1 
yESPAA'PA*A *- 

2v S PAA \ A<A*~(1) 
A~(I) 

~ [,~,~*I,~*]' av; } 
8a~(2) aa~(2) ' 

a[-s163 I 

a al(,~ ) 

3 2 

J(+I) ,up_ "~e(J) 

(6) 

eL, _]_ [#2 [#,2]Id (p#,# 2[~.)+ E#/]2'z]"J 

2pu. ~,)P#A' 
\A'~(J) A 

(7) 
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and 

u~ = Y~ {1141- vsI + 2flu J~*I/ E Paa a~l) ~ PA~" h(A, v) 
A~(I) v~(J) 

+ I-~?IK=]"~ P"'"' 2. ~ PAA 
Ae(I) 

(8) 

1 } 
Ae(1) 

Again, the notation corresponding to atomic terms is the same as in paper I. 
The numerical solution of the total variation problem can be achieved by 

means of a double iteration procedure, based alternatively on the minimization 
of the total energy with respect to the linear coefficients of the STO's and to 
exponents. 

3. Evaluation of Integrals 

a. Evaluation of Atomic Integrals 

In the first paper of this series [7] two alternative parameter schemes were 
given, differing by the fact that either the effective nuclear charges Zs and Zp, 
or the kinetic factors Ks and K v were treated as parameters. However, in all the 
cases that were investigated, it was found that within a uniquely defined molecular 
parameter scheme, both ground state energies and charge distributions do not 
differ substantially when calculated according to either the first or the second 
parameter scheme. Parameter scheme 1 however, seems sounder from a physical 
point of view and will therefore be used for the discussion and further calculations. 

b. Evaluation of Molecular Inteorals and Terms 

The Coulomb integrals [0{21f12]I,J respresenting the interaction between elec- 
trons occupying orbitals ~ and/3 localized on centers I and J, respectively, are 
reduced to interactions involving exclusively s atomic orbitals as in the CNDO 114] 
and INDO [-2] methods; the only difference being that, here, the corresponding 
Slater exponents ai(~), and aj(/~) are optimized. 

The two-center electron-core attraction integrals are also calculated as in 
the CNDO or INDO methods, i.e., 

[-6 I VjI0~ ] = Z j  [-O~2l tl21I'J , (9) 

where the ~ orbital with the varied orbital exponent ai(~) is centered on atom I 
and the s orbital q has a fixed exponent aav calculated as a weighted average of 

o and 0 the s- and p-atomic exponents as ap, corresponding to the maximum multi- 
plicity of atomic J, i.e., 

K = Integer (Zj + 7/6), 

o + ( Z j _  K) o 
K .a s ap (10) aav : Zj 
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where Zj is the charge of the core J, equal to 1 for the H atom and equal to the 
atomic number diminished by 2 for all other atoms. (The numerical values of 

o and o as ap are listed in Table 3 of Ref. [7].) 
In addition, we define the total core-core interaction as 

ZIZj 
Core-Core inter, terms = ~ ~ Ri J 

l<J 
(11) 

A little longer discussion will be needed to estimate the best form of the 
resonance integrals corresponding to the off-diagonal terms of the H matrix 
defined in Eqs. (2) and (3). 

Let us first assume that h(e, fl) can be expressed as 

h(e, fl) = - {a(e) + a(fl)} S~a, (12) 

where S,a is the overlap integral between the corresponding STO functions having 
optimized exponents a (~) and a (fl). Such an expression accounts for the geometrical 
constraint appropriate to the resonance integrals and partly for the nature of 
orbitals as well. In addition, since all AO's localized on any given centre are 
orthonormal, only cofactors fl~p for AO's belonging to different atoms have to 
be considered. As fl~a then depends only on the type of atoms involved, it is 
possible to write 

The form of the cofactor flu was estimated by comparing calculated and ex- 
perimental heats of atomization of some diatomic and hydride molecules. However, 
since there are not enough suitable molecules for an unambiguous determination 
of all flu's, the fitting procedure was extended to several points of the Morse 
curves corresponding to a few of these diatomic molecules. The results are collected 
in Fig. 1 as a function flu of the internuclear separation R between atoms I and J. 
Points corresponding to the same Morse curve are joined by a full tine. 

The fl-dependence on R for the hydrogen molecule was expressed analytically 
as 

finn = Fn(R) + 0.06206, (13) 

where 
Fn(R ) = 0.12181/(R + 0.18609). (14) 

These numerical constants were chosen to fit exactly the points of the Morse 
curve of the H 2 molecule corresponding to the equilibrium distance and to the 
separations of the hydrogen nuclei of 1.0 and 2.0 a.u. The determination of the 
fl-values for X-H bonds in polyatomic hydrides was carried out using the re- 
lationship (13) for the calculation of H,~ elements. 

From Fig. 1 it can be seen that for most types of bonds, (see however F2) 
the fl-values decrease with increasing bond distance along a specific pattern that 
seems to be describable by an expression such as: 

flu(R) = F (R) + C(Z),  (15) 
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where 

Z = Z I ,  if Z I > Z j ,  
(16) 

Z = Z j ,  if Z j > Z ~ ,  

F (R) can thus be treated as a common function for all atoms. The constants C (Z) 
are atomic parameters related for each bond to that atom having from both ones 
the larger core charge. Two exceptions only seem to violate these rules, the F 2 

molecule and the Li2 molecule, the latter corresponding to fitted values fl = 0.0344 
at R = 4.5 a.u.,/3 = 0.0374 at R = 5.051 a.u., and fl = 0.0393 at R = 5.5 a.u. 

Accordingly, two versions of expressing flu(R) are suggested. In the Version-I 
no additional specific atomic parameters are introduced at all and we set 

flu(R) = FH(R) + 0.0955 + (Z - Zc)-0.016,  (17) 

where Zc is the charge of the carbon core and Z is defined by means of Eq. (16). 
We are clearly putting here preference to the hydrocarbons because the value 
0.0955 is chosen to fit heats of atomization of hydrocarbons containing one and 
two carbon atoms. Of course, from Fig. 1 it can be seen that the/3-dependence 
on R given by the functions FH(R) is not steep enough, at least for all bonds shorter 
than 2.3 a.u. 

0 . 5 0  

0 . 2 5  

0 , 2 0  

,:~ 

0 . 1 5  

O,,lO 

0 . 0 5  

I I I I 

i I 

- \ II 0 

-',,\ 
_ \0 ", 'k \ o 

','x ~5 - 
,2'A. '~. 'k ' ,k 2 K-. 

0 " ' -  . . . . .  C " . . " < .  ....... - - - N  

8 

I I I I 
I 2 5 4 

R (tt.u.) 

Fig. 1. fl parameter as a function of internuclear distance R. Circles correspond to values matching 
experimental heats of atomization of corresponding molecules, full curves correspond to values fitted 
by means of Morse curves. (1, H2; 2, N2; 3, CO; 4, BeO; 5, LiF; 6, BF; 7, F2; 8, LiH; 9, BH; 10, FH; 

11, CH4; 12, NH3; 13, H20) 
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Alternatively, one may select a more appropriate function F (R) for compounds 
composed of oxygen, nitrogen, carbon and hydrogen such as 

and define in addition 

F(R) = 1.1657. exp(-  1.5897. R) 

C(4) = 0.1090 (carbon) 

C(5) = 0.1150 (nitrogen) 

C(6) = 0.1390 (oxygen). 

(18) 

(19) 

The finn values remain as defined via Eqs. (13) and (14). The dependences of 
fllj(R) vs. R defined in this way correspond to Version-II and is represented in 
Fig. 1 for all three cases by dashed curves. Version-II is thus limited to calculations 
of molecules containing only hydrogen, carbon, nitrogen and oxygen atoms. 

4. Numerical Solution 

Since most of the time the numerical solution of the system of equations given 
by Eqs. (5) and (6) does not converge when a first order iteration process is used, 
the Crout's [8] modification of the Newton-Raphson procedure was applied for 
solving the problem. The proper solution of finding the stationary value of the 
total energy given by Eq. (4) consisted of a double iteration procedure composed 
successively of one iteration step considering the P matrix as variable with the 
Slater exponents fixed and of the next iteration step improving the exponents 
with the P matrix fixed. Of course, for the second iteration step first and second 
derivatives with respect to Slater exponents of all kinds of integrals are needed. 
Whereas the expressions of one-centre terms were calculated using analytical forms 
of the derivatives, all two-centre terms were calculated using numerical derivation, 
e.g. 

~f(a, b) f (a  + A, b) - f (a  - A, b) 
- ( 2 0 )  

c~a 2A 

It was found that such a procedure yields satisfactory numerical results for the 
derivatives of all integrals using the value A = 0.01. A convergence criterion was 
imposed upon the total energy requiring the energy difference of two successive 
iteration steps to be smaller than 10 -5 a.u. In order to get faster convergence 
for the calculations of molecules CzN 2 and N20 the criterion was lowered to 
5 x 10-5 a.u. 

The initial P matrix was obtained by solving a secular problem in which the 
F,u terms were replaced by the average ionization potentials (Table 2, Paper I) 
and Fu,, (#~ v) set equal to Huv calculated with atomic Slater exponents (cf. 
Table 3 and 4, Paper I). 

On several examples of molecular calculations it was verified that the iteration 
procedure does not depend on the way it proceeds, particularly on the order of 
iteration steps. In addition, the authors believe that the initial values of Slater 
exponents taken as atomic ones ensure that this specific solution of the non- 
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linear system of Eqs. (5) and (6) by means of the proposed  procedure  is the physically 
meaningful solution a m o n g  all possible ones. 

All calculations were performed on the U N I V A C  1108 computer  using a 
F O R T R A N  V p rog ram written by the authors.  

5. Experimental Data 

Most  experimental data of both  equilibrium geometries and heats of atomi-  
zat ion at 0 ~ K (or dissociation energies Do ~ and eventually other  "Morse  curve" 
parameters  of diatomics) were taken f rom J A N A F  Inter im Thermochemical  
Tables [9-1. Only  equil ibrium geometries of molecules C H N ,  C2H 2, C2H4, C2H 6 
[10], the heat of a tomizat ion  at 0 ~ K for ethane [11], data for diatomics L iH 
and the D O value for Fa [13] were taken elsewhere. 

6. Results and Discussion 

The general me thod  of calculation of g round  state properties described in 
the previous sections has been applied to a number  of diatomic and polyatomic  
molecules as listed in Table 2. First of all, let us stress in compar ison  with other 
existing semiempirical all-valence electron methods  ( C N D O  [41, I N D O  [2], 
P N D O  [5], M I N D O  [6] et al.) that  - besides the general function F ( R )  - only 
one specific parameter  per a tom (Version-I) was in t roduced to extend the a tomic  
SCF theory with "scaled" Slater exponents to molecular  structures. The parameter  
scheme resembles the C N D O - 2  or I N D O  scheme, but  no presumptions concerning 
the values of Slater exponents  needed to be made. 

Table 1. Equilibrium geometries of calculated polyatomic molecules (in a.u.) 

Molecule Cartesian coordinates 
x y z 

HaO O 0.0 0.0 0.0 
H 1 - 1.431571 - 1.109440 0.0 
H2 1.431571 -1.109440 0.0 

NH 3 N 0.0 0.0 0.721183 
H 1 - 1.534653 -0.886033 0.0 
H2 1.534653 -0.886033 0.0 
H 3 0.0 1.772065 0.0 

CH4 C 0.0 0.0 0.0 
H 1 1.190341 1 .190341  1.190341 
H 2 1.190341 - 1.190341 - 1.190341 
H3 - 1.190341 1.190341 - 1.190341 
H4 - 1.190341 - 1.190341 1.190341 

C2H2 C 1 0.0 0.0 0.0 
C2 2.281 0.0 0.0 
H 1 - 2.002 0.0 0.0 
H 2 4.283 0.0 0.0 

CO2 C 0.0 0.0 0.0 
O 1 0.0 0,0 2.195904 
O 2 0.0 0.0 - 2.195904 
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Table 1 (continued) 

Molecule Cartesian coordinates 

x y z 

C2H4 

C2H6 
( s t . )  

C2H6 
(eel.) 

H2CO 

HCN 

C2N2 

N20  

HNO 

HNO2 
cis 

03 

C1 
C2 
H1 
H2 
H3 
H4 

C1 
C2 
H1 
H2 
H3 
H4 
H5 
H6 

C1 
C2 
H1 
H2 
H3 
H4 
H5 
H6 

C 
O 
H1 
H2 

C 
N 
H 

C1 
C2 
N1 
N2 

N1 
N2 
O 

H 
N 
O 

H 
N 
O1 
O2 

O1 
0 2  
O3 

0.0 
0.0 
1.751130 

- 1.751130 
1.751130 

- 1.751130 

0.0 
0.0 
1.961630 

-0.980815 
-0.980815 
- 1.961630 

0.980815 
0.980815 

0.0 

1.961630 
-0.980815 
-0.980815 

1.961630 
-0.980815 
-0.980815 

0.0 
2.286613 

- 1.090096 
- 1.090096 

0.0 
0.0 
0.0 

0.0 
0.0 
0,0 
0.0 

0.0 
0.0 
0.0 

0.0 
0.0 
2.131951 

1.804502 
0.0 
0.0 
2.071661 

0.0 
2.415117 

- 1.088921 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0,0 
1.698822 

- 1.698822 
0.0 

- 1.698822 
1.698822 

0.0 

0.0 
1.698822 

- 1.698822 
0,0 
1.698822 

- 1.698822 

0.0 
0.0 
1.814224 

- 1.814224 

0.0 
0.0 
0.0 

0.0 
0,0 
0.0 
0.0 

0.0 
0.0 
0.0 

- 1.927558 
0.0 
0.967994 

-0.41602 
2.759053 
0.0 
3.681416 

0.0 
0.0 
2.155700 

0.0 
2.551160 

- 1,011015 
- 1,011015 

3.562176 
3,562176 

0.0 
2.915876 

-0.699148 
-0.699148 
-0.699148 

3.615024 
3.615024 
3.615024 

0.0 
2.915876 

-0.699148 
-0.699148 
-0.699148 

3.615024 
3.615024 
3.615024 

0.0 
0.0 
0.0 
0.0 

0.0 
2,187 

-2 .0  

0.0 
2.607872 

-2.186455 
4.794328 

0.0 
2.132030 
4.369887 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
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Molecule Exptl. I N D O  Version-I Version-II 

H 2 0.1746 0.1972 0.1746 0.1746 
Li/  0.0419 0.5037 0.1131 - -  
LiH 0.0942 0.2098 0.1419 - -  
BH 0.1300 0.3437 0.1541 - -  
F 2 0.0594 0.2133 0.1716 - -  
HF  0.2247 0.2114 0.0829 - -  

LiF 0.2186 - 0.0756 0.1766 - -  
BeO 0.1723 0.1876 0.2990 0.2136 
BF 0.2980 0.3744 0.2521 - -  
CO 0.4125 0.7043 0.4281 0.4124 
N 2 0.3639 0.7279 0.4002 0.3254 
H 2 0  0.350 0.445 0.228 0.350 

BH 3 0.345-0.414 1.081 0.464 
NH 3 0.441 0.772 0.428 0.445 
CH 4 0.625 1.371 0.671 0.717 
C2H2 0.618 1.689 0.685 0.673 
C/H4 0.846 2.125 0.841 0.816 
C2H 6 (st.) 1.063 2.602 1.021 1.008 
C2H 6 (ecl.) 2.598 1.008 0.996 
0 3 0.227 0.797 0.454 0.363 
CHzO 0.571 1.235 0.568 0.547 
CHN 0.482 1.153 0.605 0.519 
(CN)2 0.782 2.220 - -  0.756 
COz 0.608 1.148 0.661 0.597 
N 2 0  0.402 1.102 0.469 0.418 

H N O  0.317 0.762 - -  0.391 
HNO2 cis 0.476 1.118 0.578 

Heats of atomization calculated from our theory are shown in Table 2. It 
may be seen that the method, particularly its Version-II, works fairly well and 
its results compare much better to experimental values than the regular INDO- 
type calculations. Moreover, equilibrium distances come out very well, as can be 
seen from Fig. 2 and Fig. 3, where a few types of dependences of heats of formation 
on geometry variations are presented. These results seem to be very encouraging, 
since the correct energy - bond distance relationship was lacking in all semi- 
empirical methods described previously, unless ample parametrization is per- 
formed [14, 6]. 

On comparing the results of Table 3, concerning the frontier orbitals, with 
known experimental ionization potentials [15, 16], it may be noticed that the 
orbital energies of the highest occupied molecular orbital are bad estimates of 
the ionization potentials. This effect, of course, could have been expected, since 
the variation of orbital exponents might only violate the validity of the Koopmans' 
theorem. If correct theoretical ionization potentials were to be calculated, the 
exponents of the ionized state would also have to be optimized. 

Due to similar reasons i.e., orbital exponents variation, it is also hard to 
draw relevant conclusions from a conventional "population analysis" procedure 
based on the charges listed in Table 3. The charges cannot be assigned entirely 
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molecules C2H2 and C2H4, the C-C bond is varied. In all cases of bond variation the equilibrium 
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Fig. 3. Heat of atomization of water molecule plotted versus OH bond distance (at the equilibrium 
bond angle), A, and bond angle (at equilibrium OH bond distance), B, respectively. Experimental 

values are represented by points of intersection of horizontal and vertical lines 
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T a b l e  3. F r o n t i e r  o rb i t a l  energies  (in a.u.), c h a r g e  densi t ies  a n d  o p t i m i z e d  e x p o n e n t s  (ca lcu la ted  b y  

m e a n  of  Vers ion- I I )  

M o l e c u l e  eh el A t o m  P ~  a(s) a(p) 

s Px Py Pz 

C O  - 0 . 5 0 1 8  0 .1235 C 1.78 0.92 0.58 0.58 2.15 1.55 
O 1.82 1.48 1.42 1.42 2.12 1.95 

N2 - 0 .5367 0 .0845 N 1.80 1.20 1.0 1.0 2.41 1.70 

I-I20 - 0 . 6 1 3 2  0 .3777 O 1.78 1.40 1.62 2.0 2.60 1.90 
H 0.60 - -  - -  - -  1.28 - -  

N H 3  - 0 . 5 8 2 5  0.2868 N 1.61 1.40 1.40 1.79 2.17 1.58 

H 0.60 - -  - -  - -  1.20 - -  

C H  4 - 0 . 6 7 6 2  0 .2388 C 1.39 1.45 1.45 1.45 1.83 1.3t  
H 0.56 - -  - -  - -  1.11 - -  

C2H2  - 0 . 5 5 5 4  0 .1309 C 1.28 0.95 1.0 1.0 2.11 1.50 
H 0.76 - -  - -  - -  1.12 - -  

C O 2  - 0 . 6 3 9 0  0 .1106 C 1.08 0.54 0.54 0.69 2.35 1.82 

O 1.88 1.73 1.73 1.23 2.65 1.92 

C2H 4 - 0 . 4 6 9 1  0.1281 C 1.25 1.08 1.0 0.98 2.09 1.55 
H 0.84 - -  - -  - -  1.07 - -  

C 2 H  6 (st.) - 0 . 4 8 0 3  0.1523 C 1.205 1.103 1.103 0 .992 2.061 1.57 
H 0.866 - -  - -  - -  1.045 - -  

C 2 H  6 (ecl.) - 0 . 4 7 8 6  0 .1544 C 1.203 1.096 1.096 0.989 2.068 1.57 
H 0 .872 - -  - -  - -  1.044 - -  

H 2 C O  - 0 . 4 6 9 2  0 .0920 C 1.22 0.86 0.98 0.62 2.18 1.62 
O 1.87 1.24 1.93 1.38 2.66 1.93 

H 0.95 - -  - -  - -  1.06 - -  

H C N  - 0 . 5 7 8 7  0.0975 C 1.31 0.91 0.91 1.00 2.15 1.48 
N 1.83 1.09 1.09 1.04 2.40 1.64 

H 0.82 - -  - -  - -  1.06 - -  

CzN2  - 0 . 5 2 9 6  0 .0219 C 1.30 0.84 0.84 0.85 2.17 1.58 
N 1.84 1.16 1.16 1.02 2.36 1.64 

N 2 0  - 0 .6638 - 0 .0806 N 1 1.86 1.30 1.30 0.79 2.40 1.68 
N 2  1.41 0.90 0.90 0.87 2.53 1.77 

O 1.89 1.81 1.81 1.17 2.48 1.76 

H N O  - 0 . 4 8 3 5  0.0231 H 0.85 - -  - -  - -  1.17 - -  
N 1.77 1.08 1.23 0.72 2.42 1.78 

O 1.90 1.40 1.78 1.28 2.68 1.92 

H N O 2  - 0 . 5 5 1 8  0 .0194 H 0.58 - -  - -  - -  0.96 - -  

N 1.88 0.90 0.67 0.55 2.58 1.95 
O 1 1.85 1.56 1.57 1.93 2.60 1.88 
0 2  1.90 1.45 1.67 1.52 2.62 1.96 

0 3  - 0 . 5 9 3 9  - 0 . 1 2 0 9  O 1  1.87 1.19 1.28 0.95 2.83 2.12 
0 2  1.95 0.92 1.95 1.53 2.66 1.95 
O 3  1.95 1.66 1.21 1.53 2.66 1.95 
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to specific centers anymore since the orbitals vary in size from molecule to mole- 
cule and the corresponding density functions may have their maxima at different 
distances from the nucleus. In addition, it is known from ab initio calculations 
that an energy optimization with respect to orbital exponents mostly leads to 
a deterioration of values of dipole moments [17-1. 

In conclusion, we should like to express that we are aware of the fact that 
there might exist other better molecular parameter schemes for incorporating 
our basic ideas developed in Paper I, that is the proper consideration of atomic 
environment and atomic contributions to electron correlation. From that point 
of view, this paper has thus to be considered as preliminary. 
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